AAV (adeno-associated virus) is a type of small DNA virus that has gained significant attention in the field of therapies for cancer or genetic disorder due to its ability to deliver therapeutic genes to specific target cells. AAV capsid tropism refers to the ability of the viral capsid to selectively infect and transduce specific cell types based on the presence of specific surface receptors or other factors on the target cells.
AAV capsid engineering is an important approach in therapies for cancer or genetic disorder research that involves modifying the AAV capsid to improve gene delivery efficiency and specificity. AAV vectors are commonly used in therapies for cancer or genetic disorder due to their ability to efficiently transduce a wide range of cell types without inducing an immune response. However, the AAV capsid can limit the effectiveness of therapies for cancer or genetic disorder in certain cell types or tissues. Capsid engineering allows for the modification of the AAV capsid to enhance transduction efficiency in specific cell types, alter tropism, and improve immune evasion. With ongoing research in AAV capsid engineering, therapies for cancer or genetic disorder holds great promise for the treatment of various genetic disorders and diseases.
Download PackGene’s π-Icosa AAV Capsid Engineering Application note
- Enhance the specificity and efficiency of gene delivery to target cells.
- Minimize the risk of off-target effects and unwanted immune responses.
- Design therapies for cancer or genetic disorder that are more precise and effective in treating specific diseases or conditions.
Never miss the candidate
Combine Directed evolution and rational design
Data you can trust
Consolidated experimental data in animals
Exclusive and confidential
Validated variant sequence will be removed for future projects
Our standard Capsid Engineering service include capsid library design and construction, two rounds of screening and final validation of top variant performance in model animals. Please discuss with our technical support for your screening criteria, animal test and any customized needs.
Detailed workflow of Capsid Engineering
PackGene has developed an AAV Capsid engineering platform, π-Icosa system, to engineer and screen AAV capsid variant sequences that have enhanced organ infection, lowered off-targeting, or other features according to customized needs. The process involves three phases of AAV capsid library construction and screening in animals to identify top variants for potential use in GCT. Phase I involves the initial construction of the capsid library, AAV packaging, animal injection, and animal testing, followed by NGS analysis and round 2 library design if necessary. Phase II follow a similar process but started with the modified library based on Phase I screening results to identify the top variants. In Phase III, the top variant plasmids are constructed, AAV packaging is carried out, and animal injection and testing are performed on a larger scale, with potential histology tests available upon request at an additional fee and time. The process aims to identify the most efficient and specific AAV capsids according to your need for GCT development.
π-Icosa standard package* | Animal | Injection | Organ |
Package 1 | Mouse (Mus musculus) | Intravenous | Any types of Organ except Brain |
Package 2 | Intravenous | Brain | |
Package 3 | Cynomolgus monkey (Macaca fascicularis) | Intravenous | Any type of Organ except Brain |
Package 4 | Intrathecal | Brain |
*Standard packages include two rounds of screening and final validation.
If you need to customize the project, please feel free to contact us.
Excellent pre-screening library diversity and uniformity
A high coverage library contains a large number of distinct capsid variants, which increases the likelihood of finding variants with desirable properties. A low coverage library may miss important capsid variants, limiting the potential for capsid engineering. Therefore, it is important to ensure that the library is diverse and contains a large number of distinct variants.
Uniformity is also important because it ensures that each capsid variant is represented equally in the library. Uneven representation can bias the screening process and lead to the selection of suboptimal variants. Therefore, it is important to ensure that the library is evenly distributed and that each variant is represented in similar amounts.
Extremely low mispackaging rate : <0.1%
Percentage of virus packed with early terminated Capsid gene is a key indicator of mispackaging rate. High mispackage rate will lead to mismatch of the capsid serotype with the actual genome it contains, resulting in error in the screening result.
In AAV capsid engineering, the goal is to modify the AAV capsid to improve its efficiency or specificity. One way to achieve this is to generate a library of AAV variants and screen them for desired properties. However, if the AAV vectors produced from this library have a high mispackaging rate, the screening results may be inaccurate and unreliable.
A high mispackaging rate can result in the production of AAV vectors that contain incorrect genetic material. These vectors can then transduce unintended cells or tissues, potentially causing toxicity or reduced efficacy. Additionally, high levels of mispackaging can lead to the formation of replication-competent AAV (rcAAV) particles, which can cause adverse immune reactions and limit the safety of therapies for cancer or genetic disorder.
Therefore, it is important to minimize the mispackaging rate in AAV capsid engineering. This can be achieved by optimizing the vector production process, such as controlling the input DNA amount, using high-quality plasmids, and optimizing the transfection conditions. Additionally, careful screening of the AAV vectors for mispackaging should be performed to ensure that the vectors being tested are representative of the intended capsid library.
To measure mispackaging rate, we measure the rate of AAV population with early terminated capsid protein in the total population. The result indicate we have extremely low mispackaging rate , ensuring the matching of packed AAV capsid gene and the capsid protein during virus packaging, thus lead to reliable screening results.
Novel Capsid screened from π-Icosa system target to CNS
AAV-PG008: a CNS targeting variant engineered via π-Icosa system
AAV-PHP.eB – a well known serotype that specifically targeted to CNS
AAV-PG008, an variant engineering via π-Icosa
10 days after injection
Novel capsid targeting muscle with liver-detargeting
PG007- Novel capsid targeting muscle
AAV-PG007, a modified backbone via π-Icosa system based on AAV9 and AAV2 chimera shows a reduction of the off-targeting to the liver while keeping muscle targeting in both mouse and monkey
Novel capsid targeting primary human T cells
PG007 delivers micro-dystrophin in DMD mouse models by systematic administration
PG007 shows functional improvement in micro-dystrophin delivery to DMD mouse models by systematic administration
PG007 shows functional improvement in micro-dystrophin delivery to DMD mouse models by systematic administration
How much plasmid do I need to provide for AAV packaging
You only need to provide 1-4 µg of plasmid. We will handle the plasmid preparation necessary for AAV packaging. You don’t need to purchase an additional plasmid prep service unless you wish to receive more plasmid from us. Please note, the timeline in our quote already includes the plasmid preparation.
What are the difference between research and NHP grade?
Research-grade AAV is actually the most common grade used for research and development, while NHP-grade is where we’ve improved the purification process and more stringent QC test, resulting in higher purity, lower endotoxin, better genome integrity and lower empty capsid rates. Since animal experiments demand higher virus quality and better consistency, we recommend using our NHP-grade AAV for large animal experiments, such as NHP, porcine, canine, etc. Of course, if you’re conducting cell experiments and desire higher purity, that’s also recommended.
How do you choose the fluorescent or luminescent marker for live imaging in mice?
For in vivo imaging, it’s generally advised to use vectors with luciferase.
Currently, in vivo imaging primarily utilizes two techniques: bioluminescence and fluorescence. Bioluminescence involves using the luciferase gene to label cells or DNA, while fluorescence employs fluorescent proteins such as GFP, EGFP, RFP, YFP, mCherry, etc., to mark cells or proteins. Bioluminescence offers advantages like straightforward operation, sensitive response, rapid imaging, and clear visualization. However, its drawback lies in its relatively weak signal, necessitating the use of CCD lenses for detection and requiring instruments with high precision. On the contrary, fluorescence allows for the utilization of various proteins for labeling and enables multiplex labeling, making the process relatively straightforward. Nevertheless, nonspecific fluorescence imposes limitations on its sensitivity, necessitating the use of excitation lights of different wavelengths, thereby making precise in vivo quantification challenging. Bioluminescence relies on the interaction with luciferase to emit light, demonstrating high specificity. The red light emitted by luciferase penetrates tissues nearly 100 times more effectively in vivo than the green light emitted by green fluorescent protein, resulting in a higher signal-to-noise ratio. While fluorescent proteins necessitate excitation light to produce reflected light, nonspecific fluorescence from the mouse’s fur reduces the signal-to-noise ratio during the detection process. Fluorescent protein detection is more suited to ex vivo detection, whereas luciferase detection is better suited to in vivo detection. Currently, luciferase labeling is more commonly employed. There are two frequently used luciferases: Firefly Luciferase (Fluc) and Renilla Luciferase (Rluc), each utilizing different substrates—D-Luciferin for the former and Coelenterazine for the latter. They emit light of varying colors, with the former emitting light at approximately 560nm and the latter emitting light at approximately 450-480nm. The light emitted by the former penetrates tissues more effectively, while the latter undergoes faster metabolism in vivo compared to the former. Typically, the former is utilized as a reporter gene, although both can be simultaneously employed for dual labeling.
What quality control tests do you conduct for your AAV?
Our AAV products are subjected to standard release testing procedures, including endotoxin assessment using Limulus Amebocyte Lysate (LAL) assay, purity analysis via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), and titer determination using quantitative Polymerase Chain Reaction (qPCR) or droplet digital PCR(ddPCR). Moreover, we conduct restriction enzyme digestion for the Gene of Interest (GOI) plasmids utilized in packaging. Different grade AAV may include different QC tests as listed here.
In addition, we offer 40+ analytical tests to measure titer, AAV genome integrity, characterization, purity, aggregation, contamination and safty, including TEM, AUC, TCID50, Nanopore deep sequencing and may others. Please refer to our anlytical tests webpage.
How is the titer of AAV determined?
During AAV titer measurement, our instruments are initially calibrated using the AAV standard product ATCC VR-1816™, a globally recognized reference titer verified by 16 laboratories. Subsequently, we employ SYBR Green qPCR methodology to ascertain titers, achieving values of 1E+13GC/ml or higher. This meticulous approach ensures alignment with prevailing academic standards and prevents inaccurate titration results.
Besides qPCR, we have several other methods available for AAV titer determination: 1. Genome titer detection by ddPCR. 2. Capsid titer detection by ELISA technology. 3. Infectious titer detection by TCID50.
What are the difference between scAAV and ssAAV?
Adeno-associated viruses (AAV) are single-stranded DNA viruses (ssAAV) that must first undergo a transition from single-stranded genome to transcriptionally active double-stranded form before expression can begin. This process limits gene transduction mediated by AAV vectors and directly affects gene expression efficiency. Self-complementary double-stranded DNA adeno-associated viruses (scAAV), on the other hand, mutate the 3′ ITR trs site, forming double-stranded DNA packaged into AAV. They do not require the transition from single-stranded to double-stranded form. In other words, after entering cells, scAAV viruses can express directly and more rapidly, with higher expression levels. The drawback of scAAV is its smaller packaging capacity and the potential to enhance immunogenicity. It is suitable for research requiring faster expression of target genes or stronger expression of genes smaller than 2.2kb.
Which serotypes does rAAV encompass, and how do you determine the suitable serotype?
As of now, nine naturally occuring serotypes of human AAV have been discovered (AAV1/2/3/4/5/6/7/8/9) and widely applied in scientific research. AAV10 and AAV11 were first discovered in non-human primates in 2004, and no cross-reactivity was observed between AAV10, AAV11, and AAV2, making them promising candidate vectors. Subsequently, researchers isolated AAV12 and AAV13 from simian adenovirus, with limited research on these serotypes currently. Based on these wild-type AAVs, researchers have developed many AAV mutants, such as AAV-DJ and the PHP series, through various modification strategies.
Due to differences in the spatial structure of capsid proteins among AAV serotypes, there are significant variations in their recognition and binding to cell surface receptors, leading to tropism of different AAV serotypes for different tissues. When selecting serotypes, experimental purposes can refer to AAV serotypes used in peer-reviewed literature. For example, AAV1 and AAV9 are more commonly used in brain research than other wild-type AAV serotypes, while AAV6 exhibits higher lymphocyte selectivity.
There are also many engineered serotypes that have been modified or engineered to enhance specific properties for gene therapy applications. These modifications can include alterations to the capsid proteins to change tissue tropism, improve transduction efficiency, evade immune responses, or increase payload capacity. Engineered AAV serotypes have been developed through various strategies such as directed evolution, rational design, or hybridization of existing serotypes. These engineered serotypes offer enhanced performance and versatility, making them valuable tools for targeted gene delivery in biomedical research and therapeutic applications.
PackGene offers nearly 100 serotypes for our packaging service to assist your research work.
Additionally, the development of AAV mutant serotypes with more tissue specificity and stronger infectivity is crucial for innovation in AAV-mediated gene delivery. PackGene provides comprehensive AAV serotype engineeringg services to offer you a one-stop solution.
However, despite the tissue tropism of wild-type AAVs to some extent, the infection of non-target tissues cannot be completely avoided. In such cases, combining tissue- or cell-specific promoters with serotypes can greatly enhance AAV specificity. PackGene offers various tissue-specific promoters, such as the muscle-specific promoter MHCK7-2 and the liver-specific promoter TBG669. Our piVector Design embed in our online ordering system offers various promoters including universal and tissue specific promoters. You may easily build your vector into our AAV backbones that have been rigorously verified for effective viral packaging.
What features does AAV have comparing to other viral vectors?
AAV vectors stand out for their safety, low immunogenicity, ability to transduce non-dividing cells, and potential for long-term gene expression without integrating into the host genome. These features make them particularly attractive for gene therapy applications targeting diseases where long-term expression and safety are paramount.
However, the limited packaging capacity is a constraint when delivering larger genes. In contrast, vectors like adenovirus and HSV can carry larger genetic payloads but come with higher immunogenicity and safety concerns. Lentiviral and retroviral vectors offer stable, long-term expression through genome integration but carry risks associated with insertional mutagenesis.
By leveraging the unique advantages of AAV, such as tissue-specific targeting through various serotypes and a favorable safety profile, therapies can be designed for a range of genetic disorders with minimized risks. These characteristics contribute to the growing preference for AAV vectors in both research and clinical gene therapy programs.
What are the general considerations when designing AAV iexperiment?
Serotype selection: If you are unsure which AAV serotype is most suitable for your experiments, we advise that you test the infection rates of 3 or more different serotypes in your experimental system with our rAAV fluorescent reporter constructs.
Gradient dilution infection: The level of transgene expression driven by rAAV may vary substantially across different genes. We therefore recommend that you perform 3-4 AAV gradient dose injections to determine the ideal gene expression level for each rAAV before performing any formal experiments.
Experimental control: We advise the use of a GFP positive control vector of the same serotype and promoter as your experimental vector.
AAV Library Service
READ MORE